Peterbe.com

A blog and website by Peter Bengtsson

Filtered home page!
Currently only showing blog entries under the category: Mozilla. Clear filter

Whatsdeployed facelift

05 January 2018 0 comments   Docker, Mozilla, Web development, Python

https://whatsdeployed.io/


tl;dr; Whatsdeployed.io is an impressively simple web app to help web developers and web ops people quickly see what GitHub commits have made it into your Dev, Stage or Prod environment. Today it got a facelift.

The code is now more than 5 years old and has served me well. It's weird to talk too positively about the app because I actually wrote it but because it's so simple in terms of design and effort it feels less personal to talk about it.

Here's what's in the facelift

Please let me know if there's anything broken or missing.

Another win for Tracking Protection in Firefox

13 December 2017 0 comments   Mozilla, Web development

https://support.mozilla.org/en-US/kb/tracking-protection


When I read Swedish news I usually open DN.se . At least I used to. Opening it used to feel like an "investment". It takes too long to load and it makes the browser all janky because of the weight of all ad videos and whatnot.

With Tracking Protection, which is built in to recent versions of Firefox, all of those load speed concerns goes away pretty much.

Without Tracking Protection

Without

With Tracking Protection

With Tracking Protection

I've blogged about this before but I'm just so excited I felt like repeating it. With Tracking Protection now enabled it actually feels fun to open heavy-on-ads news sites again. Perhaps even worth paying for.

Unzip benchmark on AWS EC2 c3.large vs c4.large

29 November 2017 18 comments   Go, Mozilla, Linux, Python


Datadog monitoring of time to dump and extract zip files in staging server
This web app I'm working on gets a blob of bytes from a HTTP POST. The nature of the blob is a 100MB to 1,100MB blob of a zip file. What my app currently does is that it takes this byte buffer, uses Python's built in zipfile to extract all its content to a temporary directory. A second function then loops over the files within this extracted tree and processes each file in multiple threads with concurrent.futures.ThreadPoolExecutor. Here's the core function itself:

@metrics.timer_decorator('upload_dump_and_extract')
def dump_and_extract(root_dir, file_buffer):
    zf = zipfile.ZipFile(file_buffer)
    zf.extractall(root_dir)

So far so good.

Speed Speed Speed

I quickly noticed that this is amounting to quite a lot of time spent doing the unzip and the writing to disk. What to do????

At first I thought I'd shell out to good old unzip. E.g. unzip -d /tmp/tempdirextract /tmp/input.zip but that has two flaws:

1) I'd first have to dump the blob of bytes to disk and do the overhead of shelling out (i.e. Python subprocess)
2) It's actually not faster. Did some experimenting and got the same results at Alex Martelli in this Stackoverflow post

Compute EC2 instance types
What about disk speed? Yeah, this is likely to be a part of the total time. The servers that run the symbols.mozilla.org service runs on AWS EC2 c4.large. This only has EBS (Elastic Block Storage). However, AWS EC2 c3.large looks interesting since it's using SSD disks. That's probably a lot faster. Right?

Note! For context, the kind of .zip files I'm dealing with contain many small files and often 1-2 really large ones.

EC2s Benchmarking

I create two EC2 nodes to experiment on. One c3.large and one c4.large. Both running Ubuntu 16.04.

Next, I have this little benchmarking script which loops over a directory full of .zip files between 200MB-600MB large. Roughly 10 of them. It then loads each one, one at a time, into memory and calls the dump_and_extract. Let's run it on each EC2 instance:

On c4.large


c4.large$ python3 fastest-dumper.py /tmp/massive-symbol-zips
138.2MB/s            291.1MB              2.107s
146.8MB/s            314.5MB              2.142s
144.8MB/s            288.2MB              1.990s
84.5MB/s             532.4MB              6.302s
146.6MB/s            314.2MB              2.144s
136.5MB/s            270.7MB              1.984s
85.9MB/s             518.9MB              6.041s
145.2MB/s            306.8MB              2.113s
127.8MB/s            138.7MB              1.085s
107.3MB/s            454.8MB              4.239s
141.6MB/s            251.2MB              1.774s

Average speed: 127.7MB/s
Median speed:  138.2MB/s

Average files created:       165
Average directories created: 129

On c3.large


c3.large$ python3 fastest-dumper.py -t /mnt/extracthere /tmp/massive-symbol-zips
105.4MB/s            290.9MB              2.761s
98.1MB/s             518.5MB              5.287s
108.1MB/s            251.2MB              2.324s
112.5MB/s            294.3MB              2.615s
113.7MB/s            314.5MB              2.767s
106.3MB/s            291.5MB              2.742s
104.8MB/s            291.1MB              2.778s
114.6MB/s            248.3MB              2.166s
114.2MB/s            248.2MB              2.173s
105.6MB/s            298.1MB              2.823s
106.2MB/s            297.6MB              2.801s
98.6MB/s             521.4MB              5.289s

Average speed: 107.3MB/s
Median speed:  106.3MB/s

Average files created:       165
Average directories created: 127

What the heck!? The SSD based instance is 23% slower!

I ran it a bunch of times and the average and median numbers are steady. c4.large is faster than c3.large at unzipping large blobs to disk. So much for that SSD!

Something Weird Is Going On

It's highly likely that the unzipping work is CPU bound and that most of those, for example, 5 seconds is spent unzipping and only a small margin is the time it takes to write to disk.

If the unzipping CPU work is the dominant "time consumer" why is there a difference at all?!

Or, is the "compute power" the difference between c3 and c4 and disk writes immaterial?

For the record, this test clearly demonstrates that the locally mounted SSD drive is 600% faster than ESB.

c3.large$ dd if=/dev/zero of=/tmp/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 16.093 s, 66.7 MB/s
c3.large$ sudo dd if=/dev/zero of=/mnt/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 2.62728 s, 409 MB/s

Let's try again. But instead of using c4.large and c3.large, let's use the beefier c4.4xlarge and c3.4xlarge. Both have 16 vCPUs.

c4.4xlarge

c4.4xlarge$ python3 fastest-dumper.py /tmp/massive-symbol-zips
130.6MB/s            553.6MB              4.238s
149.2MB/s            297.0MB              1.991s
129.1MB/s            529.8MB              4.103s
116.8MB/s            407.1MB              3.486s
147.3MB/s            306.1MB              2.077s
151.9MB/s            248.2MB              1.634s
140.8MB/s            292.3MB              2.076s
146.8MB/s            288.0MB              1.961s
142.2MB/s            321.0MB              2.257s

Average speed: 139.4MB/s
Median speed:  142.2MB/s

Average files created:       148
Average directories created: 117

c3.4xlarge


c3.4xlarge$ python3 fastest-dumper.py -t /mnt/extracthere /tmp/massive-symbol-zips
95.1MB/s             502.4MB              5.285s
104.1MB/s            303.5MB              2.916s
115.5MB/s            313.9MB              2.718s
105.5MB/s            517.4MB              4.904s
114.1MB/s            288.1MB              2.526s
103.3MB/s            555.9MB              5.383s
114.0MB/s            288.0MB              2.526s
109.2MB/s            251.2MB              2.300s
108.0MB/s            291.0MB              2.693s

Average speed: 107.6MB/s
Median speed:  108.0MB/s

Average files created:       150
Average directories created: 119

What's going on!? The time it takes to unzip and write to disk is, on average, the same for c3.large as c3.4xlarge!

Is Go Any Faster?

I need a break. As mentioned above, the unzip command line program is not any better than doing it in Python. But Go is faster right? Right?

Please first accept that I'm not a Go programmer even though I can use it to build stuff but really my experience level is quite shallow.

Here's the Go version. Critical function that does the unzipping and extraction to disk here:

func DumpAndExtract(dest string, buffer []byte, name string) {
    size := int64(len(buffer))
    zipReader, err := zip.NewReader(bytes.NewReader(buffer), size)
    if err != nil {
        log.Fatal(err)
    }
    for _, f := range zipReader.File {
        rc, err := f.Open()
        if err != nil {
            log.Fatal(err)
        }
        defer rc.Close()
        fpath := filepath.Join(dest, f.Name)
        if f.FileInfo().IsDir() {
            os.MkdirAll(fpath, os.ModePerm)
        } else {
            // Make File
            var fdir string
            if lastIndex := strings.LastIndex(fpath, string(os.PathSeparator)); lastIndex > -1 {
                fdir = fpath[:lastIndex]
            }
            err = os.MkdirAll(fdir, os.ModePerm)
            if err != nil {
                log.Fatal(err)
            }
            f, err := os.OpenFile(
                fpath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, f.Mode())
            if err != nil {
                log.Fatal(err)
            }
            defer f.Close()

            _, err = io.Copy(f, rc)
            if err != nil {
                log.Fatal(err)
            }
        }
    }
}

And the measurement is done like this:

size := int64(len(content))
t0 := time.Now()
DumpAndExtract(tmpdir, content, filename)
t1 := time.Now()
speed := float64(size) / t1.Sub(t0).Seconds()

It's not as sophisticated (since it's only able to use /tmp) but let's just run it see how it compares to Python:

c4.4xlarge$ mkdir ~/GO
c4.4xlarge$ export GOPATH=~/GO
c4.4xlarge$ go get github.com/pyk/byten
c4.4xlarge$ go build unzips.go
c4.4xlarge$ ./unzips /tmp/massive-symbol-zips
56MB/s         407MB          7.27804954
74MB/s         321MB          4.311504933
75MB/s         288MB          3.856798853
75MB/s         292MB          3.90972474
81MB/s         248MB          3.052652168
58MB/s         530MB          9.065985117
59MB/s         554MB          9.35237202
75MB/s         297MB          3.943132388
74MB/s         306MB          4.147176578

Average speed:    70MB/s
Median speed:     81MB/s

So... Go is, on average, 40% slower than Python in this scenario. Did not expect that.

In Conclusion

No conclusion. Only confusion.

I thought this would be a lot clearer and more obvious. Yeah, I know it's crazy to measure two things at the same time (unzip and disk write) but the whole thing started with a very realistic problem that I'm trying to solve. The ultimate question was; will the performance benefit from us moving the web servers from AWS EC2 c4.large to c3.large and I think the answer is no.

UPDATE (Nov 30, 2017)

Here's a horrible hack that causes the extraction to always go to /dev/null:

class DevNullZipFile(zipfile.ZipFile):
    def _extract_member(self, member, targetpath, pwd):
        # member.is_dir() only works in Python 3.6
        if member.filename[-1] == '/':
            return targetpath
        dest = '/dev/null'
        with self.open(member, pwd=pwd) as source, open(dest, "wb") as target:
            shutil.copyfileobj(source, target)
        return targetpath


def dump_and_extract(root_dir, file_buffer, klass):
    zf = klass(file_buffer)
    zf.extractall(root_dir)

And here's the outcome of running that:

c4.4xlarge$ python3 fastest-dumper.py --dev-null /tmp/massive-symbol-zips
170.1MB/s            297.0MB              1.746s
168.6MB/s            306.1MB              1.815s
147.1MB/s            553.6MB              3.765s
132.1MB/s            407.1MB              3.083s
145.6MB/s            529.8MB              3.639s
175.4MB/s            248.2MB              1.415s
163.3MB/s            321.0MB              1.965s
162.1MB/s            292.3MB              1.803s
168.5MB/s            288.0MB              1.709s

Average speed: 159.2MB/s
Median speed:  163.3MB/s

Average files created:       0
Average directories created: 0

I ran it a few times to make sure the numbers are stable. They are. This is on the c4.4xlarge.

So, the improvement of writing to /dev/null instead of the ESB /tmp is 15%. Kinda goes to show how much of the total time is spent reading the ZipInfo file object.

For the record, the same comparison on the c3.4xlarge was 30% improvement when using /dev/null.

Also for the record, if I replace that line shutil.copyfileobj(source, target) above with pass, the average speed goes from 159.2MB/s to 112.8GB/s but that's not a real value of any kind.

UPDATE (Nov 30, 2017)

Here's the same benchmark using c5.4xlarge instead. So, still EBS but...
"3.0 GHz Intel Xeon Platinum processors with new Intel Advanced Vector Extension 512 (AVX-512) instruction set"

Let's run it on this supposedly faster CPU:


c5.4xlarge$ python3 fastest-dumper.py /tmp/massive-symbol-zips
165.6MB/s            314.6MB              1.900s
163.3MB/s            287.7MB              1.762s
155.2MB/s            278.6MB              1.795s
140.9MB/s            513.2MB              3.643s
137.4MB/s            556.9MB              4.052s
134.6MB/s            531.0MB              3.946s
165.7MB/s            314.2MB              1.897s
158.1MB/s            301.5MB              1.907s
151.6MB/s            253.8MB              1.674s
146.9MB/s            502.7MB              3.422s
163.7MB/s            288.0MB              1.759s

Average speed: 153.0MB/s
Median speed:  155.2MB/s

Average files created:       150
Average directories created: 119

So that is, on average, 10% faster than c4.4xlarge.

Is it 10% more expensive? For a 1-year reserved instance, it's $0.796 versus $0.68 respectively. I.e. 15% more expensive. In other words, in this context it's 15% more $$$ for 10% more processing power.

UPDATE (Jan 24, 2018)

I can almost not believe it!

Thanks you Oliver who discovered (see comment below) a blaring mistake in my last conclusion. The for reserved instances (which is what we use on my Mozilla production servers) the c5.4xlarge is actually cheaper than c4.4xlarge. What?!

In my previous update I compared c4.4xlarge and c5.4xlarge and concluded that c5.4xlarge is 10% faster but 15% more expensive. That actually made sense. Fancier servers, more $$$. But it's not like that in the real world. See for yourself:

c4.4xlarge
c4.4xlarge

c5.4xlarge
c5.4xlarge

To enable Tracking Protection for performance

01 November 2017 0 comments   Mozilla, Web development


In Firefox it's really easy to switch Tracking Protection on and off. I usually have it off in my main browser because, as a web developer, it often gives me an insight into what others would see and that's often helpful.

Tracking Protection as a means for performance boost as been mentioned many times before to not just avoid leaving digital footprints but also a way to browse faster.

An Example of Performance

I just wanted to show such an example. In both examples I load a blog post on seriouseats.com which has real content and lots of images (11 non-ad images, totalling ~600KB).

First, without Tracking Protection

Without Tracking Protection

Next, with Tracking Protection

With Tracking Protection

This is the Network waterfall view of all the requests needed to make up the page. The numbers at the very bottom are the interesting ones.

Without Tracking Protection

With Tracking Protection

It should be pointed out that the first version, without Tracking Protection, actually is document complete at about 20 seconds. That means that page loading icon in the browser toolbar stops spinning. That's because internally it starts triggering more downloads (for ads) by JavaScript that executes when the page load event is executed. So you can already start reading the main content and all content related images are ready at this point but it's still ~30 seconds of excessive browser and network activity just to download the ads.

Enable Tracking Protection

Enabling Tracking Protection in Firefox is really easy. It's not an addon or anything else that needs to be installed. Just click Preferences, then click the Privacy & Security tab, scroll down a little and look for Tracking Protection. There choose the Always option. That's it.

Discussion

Tracking Protection is big and involved topic. It digs into the realm of privacy and the right to your digital footprint. It also digs into the realm of making it harder (or easier, depending on how you phrase it) for content creators to generate revenue to be able to keep create content.

The takeaway is that it can mean many things but for people who just want to browse the web much much faster it can be just about performance.

Mozilla Symbol Server (aka. Tecken) load testing

06 September 2017 0 comments   Mozilla, Django, Web development, Python


(Thanks Miles Crabil not only for being an awesome Ops person but also for reviewing this blog post!)

My project over the summer, here at Mozilla, has been a project called Mozilla Symbol Server. It's a web service that uploads C++ symbol files, downloads C++ symbol files and symbolicates C++ crash stacktraces. It went into production last week which was fun but there's still lots of work to do on adding beyond-parity features and more optimizations.

What Is Mozilla Symbol Server?

The code name for this project is Tecken and it's written in Python (Django, Gunicorn) and uses PostgreSQL, Redis and Celery. The frontend is entirely static and developed (almost) as a separate project within. The frontend is written in React (using create-react-app and react-router). Everything is run as Docker containers. And if you ask me more details about how it's configured/deployed I'm afraid I have to defer to the awesome Mozilla CloudOps team.

One the challenges I faces developing Tecken is that symbol downloads need to be fast to handle high volumes of traffic. Today I did some load testing on our stage deployment and managed to start 14 concurrent clients that bombarded our staging server with realistic HTTPS GET queries based on log files. It's actually 7 + 1 + 4 + 2 concurrent clients. 7 of them from a m3.2xlarge EC2 node (8 vCPUs), 1 from a m3.large EC2 node (1 vCPU), 2 from two separate NYC based DigitalOcean personal servers and 2 clients here from my laptop on my home broadband. Basically, each loadtest script process got its own CPU.

Total req/s
It's hard to know how much more each client could push if it wasn't slowed down. Either way, the server managed to sustain about 330 requests per second. Our production baseline goal is to able to handle at least 40 requests per second.

After running for a while the caches started getting warm but about 1-5% of requests do have to make a boto3 roundtrip to an S3 bucket located on the other side of America in Oregon. There is also a ~5% penalty in that some requests trigger a write to a central Redis ElastiCache server. That's cheaper than the boto3 S3 call but still hefty latency costs to pay.

The ELB in our staging environment spreads the load between 2 c4.large (2 vCPUs, 3.75GB RAM) EC2 web heads. Each running with preloaded Gunicorn workers between Nginx and Django. Each web head has its own local memcached server to share memory between each worker but only local to the web head.

Is this a lot?

How long is a rope? Hard to tell. Tecken's performance is certainly more than enough and by the sheer fact that it was only just production deployed last week tells me we can probably find a lot of low-hanging fruit optimizations on the deployment side over time.

One way of answering that is to compare it with our lightest endpoint. One that involves absolutely no external resources. It's just pure Python in the form of ELB → Nginx → Gunicorn → Django. If I run hey from the same server I did the load testing I get a topline of 1,300 requests per second.

$ hey -n 10000 -c 10 https://symbols.stage.mozaws.net/__lbheartbeat__
Summary:
  Total:    7.6604 secs
  Slowest:  0.0610 secs
  Fastest:  0.0018 secs
  Average:  0.0075 secs
  Requests/sec: 1305.4199
...  

That basically means that all the extra "stuff" (memcache key prep, memcache key queries and possible other high latency network requests) it needs to do in the Django view takes up roughly 3x the time it takes the absolute minimal Django request-response rendering.

Also, if I use the same technique to bombard a single URL, but one that actually involves most code steps but is definitely able to not require any slow ElastiCache writes or boto3 S3 reads you I get 800 requests per second:

$ hey -n 10000 -c 10 https://symbols.stage.mozaws.net/advapi32.pdb/5EFB9BF42CC64024AB64802E467394642/advapi32.sy
Summary:
  Total:    12.4160 secs
  Slowest:  0.0651 secs
  Fastest:  0.0024 secs
  Average:  0.0122 secs
  Requests/sec: 805.4150
  Total data:   300000 bytes
  Size/request: 30 bytes
...

Lesson learned

Max CPU Used
It's a recurring reminder that performance is almost all about latency. If not RAM or disk it's networking. See the graph of the "Max CPU Used" which basically shows that CPU of user, system and stolen ("CPU spent waiting for the hypervisor to service another virtual CPU") never sum totalling over 50%.

crontabber now supports locking, both high- and low-level

04 March 2017 0 comments   PostgreSQL, Mozilla, Python

https://github.com/mozilla/crontabber#how-locking-works


tl;dr; In other words, you can now have multiple servers with crontabber, all talking to a central PostgreSQL for its state, and not have to worry about jobs being started more than exactly once. This will be super useful if your crontabber apps are such that they kick of stored procedures that would freak out if run more than once with the same parameters.

crontabber is an advanced Python program to run cron-like applications in a predictable way. Every app is a Python class with a run method. Example here. Until version 0.18 you had to do locking outside but now the locking has been "internalized". Meaning, if you open two terminals and run python crontabber.py --admin.conf=myconfig.ini in both you don't have to worry about it starting the same apps in parallel.

General, business logic locking

Every app has a state. It's stored in PostgreSQL. It looks like this:

# \d crontabber
              Table "public.crontabber"
    Column    |           Type           | Modifiers
--------------+--------------------------+-----------
 app_name     | text                     | not null
 next_run     | timestamp with time zone |
 first_run    | timestamp with time zone |
 last_run     | timestamp with time zone |
 last_success | timestamp with time zone |
 error_count  | integer                  | default 0
 depends_on   | text[]                   |
 last_error   | json                     |
 ongoing      | timestamp with time zone |
Indexes:
    "crontabber_unique_app_name_idx" UNIQUE, btree (app_name)

The last column, ongoing used to be just for the "curiosity". For example, in Socorro we used that to display a flashing message about which jobs are ongoing right now.

As of version 0.18, this ongoing column is actually used to NOT run apps again. Basically, when started, crontabber figures out which app to run next (assuming it's time to run it) and now the first thing it does is look up if it's ongoing already, and if it is the whole crontabber application exits with an error code of 3.

Sub-second locking

What might happen is that two separate servers which almost perfectly synchronoized clocks might have cron run crontabber at the "exact" same time. Or rather, only a few milliseconds apart. But the database is central so what might happen is that two distinct PostgreSQL connection tries to send a... UPDATE crontabber SET ongoing=now() WHERE app_name='some-app-name' at the very same time.

So how is this solved? The answer is row-level locking. The magic sauce is here. You make a select, by app_name with a suffix of FOR UPDATE WAIT. Imagine two distinct PostgreSQL connections sending this:

BEGIN;
SELECT ongoing FROM crontabber WHERE app_name = 'my-app-name'
FOR UPDATE NOWAIT;

-- do some other stuff in Python

UPDATE crontabber SET ongoing = now() WHERE app_name = 'my-app-name';
COMMIT;

One of them will succeed the other will raise an error. Now all you need to do is catch that raised error, check that it's a row-level locking error and not some other general error. Instead of worrying about the raised error you just accept it and exit the program early.

This screenshot of a test.sql script demonstrates this:

Two distinct terminals sending an UPDATE to psql. One will error.
Two terminals lined up and I start one and quickly switch and start the other one

Another way to demonstrate this is to use psycopg2 in a little script:

import threading
import psycopg2


def updater():
    connection = psycopg2.connect('dbname=crontabber_exampleapp')
    cursor = connection.cursor()
    cursor.execute("""
    SELECT ongoing FROM crontabber WHERE app_name = 'bar'
    FOR UPDATE NOWAIT
    """)
    cursor.execute("""
    UPDATE crontabber SET ongoing = now() WHERE app_name = 'bar'
    """)
    print("JOB CAN START!")
    connection.commit()


# Use threads to simulate starting two connections virtually 
# simultaneously.
threads = [
    threading.Thread(target=updater),
    threading.Thread(target=updater),
]
for thread in threads:
    thread.start()
for thread in threads:
    thread.join()

The output of this is:

▶ python /tmp/test.py
JOB CAN START!
Exception in thread Thread-1:
Traceback (most recent call last):
...
OperationalError: could not obtain lock on row in relation "crontabber"

With threads, you never know exactly which one will work and which one will not. In this case it was Thread-1 that sent its SQL a couple of nanoseconds too late.

In conclusion...

As of version 0.18 of crontabber, all locking is now dealt with inside crontabber. You still kick off crontabber from cron or crontab but if your cron does kick it off whilst it's still in the midst of running a job, it will simply exit with an error code of 2 or 3.

In other words, you can now have multiple servers with crontabber, all talking to a central PostgreSQL for its state, and not have to worry about jobs being started more than exactly once. This will be super useful if your crontabber apps are such that they kick of stored procedures that would freak out if run more than once with the same parameters.