Peterbe.com

A blog and website by Peter Bengtsson

Filtered home page!
Currently only showing blog entries under the category: Web development. Clear filter

Generating random avatar images in Django/Python

28 October 2020 0 comments   Web development, Django, Python


tl;dr; <img src="/avatar.random.png" alt="Random avataaar"> generates this image:

Random avataaar
(try reloading to get a random new one. funny aren't they?)

When you use Gravatar you can convert people's email addresses to their mugshot.
It works like this:

<img src="https://www.gravatar.com/avatar/$(md5(user.email))">

But most people don't have their mugshot on Gravatar.com unfortunately. But you still want to display an avatar that is distinct per user. Your best option is to generate one and just use the user's name or email as a seed (so it's always random but always deterministic for the same user). And you can also supply a fallback image to Gravatar that they use if the email doesn't match any email they have. That's where this blog post comes in.

I needed that so I shopped around and found avataaars generator which is available as a React component. But I need it to be server-side and in Python. And thankfully there's a great port called: py-avataaars.

It depends on CairoSVG to convert an SVG to a PNG but it's easy to install. Anyway, here's my hack to generate random "avataaars" from Django:

import io
import random

import py_avataaars
from django import http
from django.utils.cache import add_never_cache_headers, patch_cache_control


def avatar_image(request, seed=None):
    if not seed:
        seed = request.GET.get("seed") or "random"

    if seed != "random":
        random.seed(seed)

    bytes = io.BytesIO()

    def r(enum_):
        return random.choice(list(enum_))

    avatar = py_avataaars.PyAvataaar(
        style=py_avataaars.AvatarStyle.CIRCLE,
        # style=py_avataaars.AvatarStyle.TRANSPARENT,
        skin_color=r(py_avataaars.SkinColor),
        hair_color=r(py_avataaars.HairColor),
        facial_hair_type=r(py_avataaars.FacialHairType),
        facial_hair_color=r(py_avataaars.FacialHairColor),
        top_type=r(py_avataaars.TopType),
        hat_color=r(py_avataaars.ClotheColor),
        mouth_type=r(py_avataaars.MouthType),
        eye_type=r(py_avataaars.EyesType),
        eyebrow_type=r(py_avataaars.EyebrowType),
        nose_type=r(py_avataaars.NoseType),
        accessories_type=r(py_avataaars.AccessoriesType),
        clothe_type=r(py_avataaars.ClotheType),
        clothe_color=r(py_avataaars.ClotheColor),
        clothe_graphic_type=r(py_avataaars.ClotheGraphicType),
    )
    avatar.render_png_file(bytes)

    response = http.HttpResponse(bytes.getvalue())
    response["content-type"] = "image/png"
    if seed == "random":
        add_never_cache_headers(response)
    else:
        patch_cache_control(response, max_age=60, public=True)

    return response

It's not perfect but it works. The URL to this endpoint is /avatar.<seed>.png and if you make the seed parameter random the response is always different.

To make the image not random, you replace the <seed> with any string. For example (use your imagination):

{% for comment in comments %}
  <img src="/avatar.{{ comment.user.id }}.png" alt="{{ comment.user.name }}">
  <blockquote>{{ comment.text }}</blockquote>
  <i>{{ comment.date }}</i>
{% endfor %}

I've put together this test page if you want to see more funny avatar combinations instead of doing work :)

That's Groce!

22 October 2020 0 comments   Web development, Family, Mobile, Preact

https://thatsgroce.web.app/


tl;dr That's Groce! is: A mobile web app to help families do grocery shopping and meal planning. Developed out of necessity by a family (Peter and Ashley) and used daily in their home.

Hopefully, the About page explains what it does.

Sample list
Screenshot of a sample list

The backstory

We used to use Wunderlist, but that stopped working. Next, we tried Cozi and that worked for a while but it was buggy and annoying in so many ways. Finally, we gave up and decided to build our own. Exactly how we need it to be, as efficient as possible.

We also tried a couple of regular to-do list apps where you can have shared accounts but we wanted something perfectly tailored towards the specific needs of family grocery shopping (and meal planning). That's how That's Groce! was born.

The killer features

The about page does a good job of listing the killer features but let's emphasize it one more time.

It's not an app store app

Saved as Home screen app

You won't find it on the Apple App store. It's a web app that's been tailored to work well in mobile web browsers (iOS Safari) and you can use the "Add to Home screen" so it looks and acts like a regular app.
It would be nice to try to make it a regular native mobile app but that takes significant time which is hard to find but certainly something to aspire to if it can be done in a nice way.

"Really smart about suggestions"

What does that killer feature mean? (At the time of writing (Oct 2020), it isn't launched yet but the pieces are coming together.) Are there certain stables you buy recurringly? Like milk or bananas or Cheerios. If the app can start to see a pattern of commonly added items, it can suggest it immediately so when you're making your list on Monday morning, you just need to tap to add those.

Another important thing is that as you type, it can suggest many things based on the first or couple of characters you type in, but you can't suggest every single possible word so which one should you suggest first?
The way That's Groce! works is that it learns based on the number of times and how recently you add something to your list. As of today, look what happens when I type a on my list:

Suggestions based on typing 'a'
When I type a it suggests things that start with "A" but based on frequency.

The more you use it, the better the suggestions get.

Also, to get you started, over 100 items are preloaded as good suggestions but that's just to get you up and running. Once your family starts to use it, your own suggestions get better and better over time.

"Same order you usually walk through your grocery store"

This was important to us because we found we walk through the aisles in pretty much the same way. Every time. When you walk in you have your produce (veggies first, then fruit, then salad stuff) on the right. Then baked goods and deli. Then meats and alcohol. Etc. So if you can group your items based on these descriptions you can be really efficient with your list and it becomes a lot easier to cross off sections of the store and not have to scroll up and down or having to walk back to pick up that pizza dough all the way back at the deli section.

For this to work, you need to type in groups for your items. But you can call them whatever you like. If you want to type "Aisle 1", "Aisle 2", "Dairy stuff" you can. It's all up to you. Keep in mind that it might feel like a bit of up-front work at first, and it is, but your list is learning so you essentially only have to do it once.

Don't be a slave to your list!

If you do decide to try it, keep one thing in mind: You're in control. You don't need to type in perfect descriptions, amounts, groups, and quantities. If you don't know how to spell "bee-ar-naise sauce", don't worry about it. It's your list. You can type whatever you want or need. A lot of to-do lists invite you with complex options to organize the hell out of your list items. Don't do that. Think of That's Groce! as a fridge post-it note that you and your partner keep in their pocket that automatically synchronizes.

You can help

We built this for ourselves but it's built in a way that any family can use it and hopefully also be better organized. But once you sign in you can submit feedback for suggestions. And if you're into coding, the whole app is Open Source so it's fairly easy to modify the code or even host it yourself if you wanted to: https://github.com/peterbe/groce/

Also, if you do try it and like it, please consider going to the Share the ❤️ page and, you know, share it with friends. Much appreciated!

Progressive CSS rendering with or without data URLs

26 September 2020 0 comments   Web development, Web Performance, JavaScript


You can write your CSS so that it depends on images. Like this:

li.one {
  background-image: url("skull.png");
}

That means that the browser will do its best to style the li.one with what little it has from the CSS. Then, it'll ask the browser to go ahead and network download that skull.png URL.

But, another option is to embed the image as a data URL like this:

li.one{background-image:url(...rkJggg==)

As a block of CSS, it's much larger but it's one less network call. What if you know that skull.png will be needed? Is it faster to inline it or to leave it as a URL? Let's see!

First of all, I wanted to get a feeling for how much larger an image is in bytes if you transform them to data URLs. Check out this script's output:

▶ ./bin/b64datauri.js src/*.png src/*.svg
src/lizard.png       43,551     58,090     1.3x
src/skull.png        7,870      10,518     1.3x
src/clippy.svg       483        670        1.4x
src/curve.svg        387        542        1.4x
src/dino.svg         909        1,238      1.4x
src/sprite.svg       10,330     13,802     1.3x
src/survey.svg       2,069      2,786      1.3x

Basically, as a blob of data URL, the images become about 1.3x larger. Hopefully, with HTTP2, the headers are cheap for each URL downloaded over the network, but it's not 0. (No idea what the CPU-work multiplier is)

Experiment assumptions and notes

It's a fairly commonly known fact that data URLs have a CPU cost. That base64 needs to be decoded before the image can be decoded by the renderer. So let's stick to fairly small images.

The experiment

I made a page that looks like this:

li {
  background-repeat: no-repeat;
  width: 150px;
  height: 150px;
  margin: 20px;
  background-size: contain;
}
li.one {
  background-image: url("skull.png");
}
li.two {
  background-image: url("dino.svg");
}
li.three {
  background-image: url("clippy.svg");
}
li.four {
  background-image: url("sprite.svg");
}
li.five {
  background-image: url("survey.svg");
}
li.six {
  background-image: url("curve.svg");
}

and

<ol>
  <li class="one">One</li>
  <li class="two">Two</li>
  <li class="three">Three</li>
  <li class="four">Four</li>
  <li class="five">Five</li>
  <li class="six">Six</li>
</ol>

See the whole page here

The page also uses Bootstrap to make it somewhat realistic. Then, using minimalcss combine the external CSS with the CSS inline and produce a page that is just HTML + 1 <style> tag.

Now, based on that page, the variant is that each url($URL) in the CSS gets converted to url(data:mime/type;base64,blablabla...). The HTML is gzipped (and brotli compressed) and put behind a CDN. The URLs are:

Also, there's this page which is without the critical CSS inlined.

To appreciate what this means in terms of size on the HTML, let's compare:

Considering that gzip (accept-encoding: gzip,deflate) is almost always used by browsers, that means the page is 15KB more before it can be fully downloaded. (But, it's streamed so maybe the comparison is a bit flawed)

Analysis

WebPagetest.org results here. I love WebPagetest, but the results are usually a bit erratic to be a good enough for comparing. Maybe if you could do the visual comparison repeated times, but I don't think you can.

WebPagetest comparison
WebPagetest visual comparison

And the waterfalls...

WebPagetest waterfall, with regular URLs
With regular URLs

WebPagetest waterfall with data URLs
With data URLs

Fairly expected.

Next up, using Google Chrome's Performance dev tools panel. Set to 6x CPU slowdown and online with Fast 3G.

I don't know how to demonstrate this other than screenshots:

Performance with external images
Performance with external images

Performance with data URLs
Performance with data URLs

Those screenshots are rough attempts at showing the area when it starts to display the images.

Whole Performance tab with external images
Whole Performance tab with external images

Whole Performance tab with data URLs
Whole Performance tab with data URLs

I ran these things 2 times and the results were pretty steady.

I tried Lighthouse but the difference was indistinguishable.

Summary

Yes, inlining your CSS images is faster. But it's with a slim margin and the disadvantages aren't negligible.

This technique costs more CPU because there's a lot more base64 decoding to be done, and what if you have a big fat JavaScript bundle in there that wants a piece of the CPU? So ask yourself, how valuable is to not hog the CPU. Perhaps someone who understands the browser engines better can tell if the base64 decoding cost is spread nicely onto multiple CPUs or if it would stand in the way of the main thread.

What about anti-progressive rendering

When Facebook redesigned www.facebook.com in mid-2020 one of their conscious decisions was to inline the SVG glyphs into the JavaScript itself.

"To prevent flickering as icons come in after the rest of the content, we inline SVGs into the HTML using React rather than passing SVG files to <img> tags."

Although that comment was about SVGs in the DOM, from a JavaScript perspective, the point is nevertheless relevant to my experiment. If you look closely, at the screenshots above (or you open the URL yourself and hit reload with HTTP caching disabled) the net effect is that the late-loading images do cause a bit of "flicker". It's not flickering as in "now it's here", "now it's gone", "now it's back again". But it's flickering in that things are happening with progressive rendering. Your eyes might get tired and they say to your brain "Wake me up when the whole thing is finished. I can wait."

This topic quickly escalates into perceived performance which is a stratosphere of its own. And personally, I can only estimate and try to speak about my gut reactions.

In conclusion, there are advantages to using data URIs over external images in CSS. But please, first make sure you don't convert the image URLs in a big bloated .css file to data URLs if you're not sure they'll all be needed in the DOM.

Bonus!

If you're not convinced of the power of inlining the critical CSS, check out this WebPagetest run that includes the image where it references the whole bootstrap.min.css as before doing any other optimizations.

With baseline that isn't just the critical CSS
With baseline that isn't just the critical CSS

Lazy-load Firebase Firestore and Firebase Authentication in Preact

02 September 2020 0 comments   Web development, Web Performance, JavaScript, Preact


I'm working on a Firebase app called That's Groce! based on preact-cli, with TypeScript, and I wanted to see how it appears with or without Firestore and Authenticated lazy-loaded.

In the root, there's an app.tsx that used look like this:

import { FunctionalComponent, h } from "preact";
import { useState, useEffect } from "preact/hooks";

import firebase from "firebase/app";
import "firebase/auth";
import "firebase/firestore";

import { firebaseConfig } from "./firebaseconfig";

const app = firebase.initializeApp(firebaseConfig);

const App: FunctionalComponent = () => {
  const [auth, setAuth] = useState<firebase.auth.Auth | null>(null);
  const [db, setDB] = useState<firebase.firestore.Firestore | null>(null);

  useEffect(() => {
    const appAuth = app.auth();
    setAuth(appAuth);
    appAuth.onAuthStateChanged(authStateChanged);

    const db = firebase.firestore();
    setDB(db);
  }, []);

...

While this works, it does make a really large bundle when both firebase/firestore and firebase/auth imported in the main bundle. In fact, it looks like this:

▶ ls -lh build/*.esm.js
-rw-r--r--  1 peterbe  staff   510K Sep  1 14:13 build/bundle.0438b.esm.js
-rw-r--r--  1 peterbe  staff   5.0K Sep  1 14:13 build/polyfills.532e0.esm.js

510K is pretty hefty to have to ask the client to download immediately. It's loaded like this (in build/index.html):

<script crossorigin="anonymous" src="/bundle.0438b.esm.js" type="module"></script>
<script nomodule src="/polyfills.694cb.js"></script>
<script nomodule defer="defer" src="/bundle.a4a8b.js"></script>

To lazy-load this

To lazy-load the firebase/firestore and firebase/auth you do this instead:

...

const App: FunctionalComponent = () => {
  const [auth, setAuth] = useState<firebase.auth.Auth | null>(null);
  const [db, setDB] = useState<firebase.firestore.Firestore | null>(null);

  useEffect(() => {
    import("firebase/auth")
      .then(() => {
        const appAuth = app.auth();
        setAuth(appAuth);
        appAuth.onAuthStateChanged(authStateChanged);
      })
      .catch((error) => {
        console.error("Unable to lazy-load firebase/auth:", error);
      });

    import("firebase/firestore")
      .then(() => {
        const db = firebase.firestore();
        setDB(db);
      })
      .catch((error) => {
        console.error("Unable to lazy-load firebase/firestore:", error);
      });
  }, []);

...

Now it looks like this instead:

▶ ls -lh build/*.esm.js
-rw-r--r--  1 peterbe  staff   173K Sep  1 14:24 build/11.chunk.b8684.esm.js
-rw-r--r--  1 peterbe  staff   282K Sep  1 14:24 build/12.chunk.3c1c4.esm.js
-rw-r--r--  1 peterbe  staff    56K Sep  1 14:24 build/bundle.7225c.esm.js
-rw-r--r--  1 peterbe  staff   5.0K Sep  1 14:24 build/polyfills.532e0.esm.js

The total sum of all (relevant) .esm.js files is the same (minus a difference of 430 bytes).

But what does it really look like? The app is already based around that

const [db, setDB] = useState<firebase.firestore.Firestore | null>(null);

so it knows to wait until db is truthy and it displays a <Loading/> component until it's ready.

To test how it loads I used the Chrome Performance devtools with or without the lazy-loading and it's fairly self-explanatory:

Before
Before, no lazy-loading

After
After, with lazy-loading

Clearly, the lazy-loaded has a nicer pattern in that it breaks up the work by the main thread.

Conclusion

It's fairly simple to do and it works. The main bundle becomes lighter and allows the browser to start rendering the Preact component sooner. But it's not entirely obvious if it's that much better. The same amount of JavaScript needs to downloaded and parsed no matter what. It's clearly working as a pattern but it's still pretty hard to judge if it's worth it. Now there's more "swapping".

And the whole page is server-side rendered anyway so in terms of immediate first-render it's probably the same. Hopefully, HTTP2 loading does the right thing but it's not yet entirely clear if the complete benefit is there. I certainly hope that this can improve the "Total Blocking Time" and "Time to Interactive".

The other important thing is that not all imports from firebase/* work in Node because they depend on window. It works for firebase/firestore and firestore/auth but not for firestore/analytics and firestore/performance. Now, I can add those lazy-loaded in the client and have the page rendered in Node for that initial build/index.html.

<datalist> looks great on mobile devices

28 August 2020 0 comments   Web development, Mobile


<datalist> is an underrated HTML API. It's basically a native autocomplete widget that requires 0 JavaScript. What I didn't know is how great it is on mobile devices. Especially the iOS Safari platform which is, to be honest, the only mobile device I have.

What's cool about it is that it's easy to implement, from a developer's point-of-view. But most importantly, it works great for users. The problem usually on mobile devices and autocomplete is that it's hard to find a good spot to display the suggestions. Most autocomplete widgets are a styled form of <div class="results"><ul><li>Suggestion 1</li><li>Suggestion 2</li></ul></div> that usually follows the <input> element. Usually, this simply boils down to screen height real estate. Oftentimes you want to display so much more rich stuff in the autocomplete results but it's hard to fit in a nice list of results between the <input> and the native keyboard display. For example, on this page ...

Lyrics search
Note how the search results get hidden underneath the keyboard.

Demo

The cool thing about <datalist> is that gets embedded in the native mobile keyboard in a sense. But what's extra cool is that the browser will do an OK job of filtering all the options for you, so that you, as a developer, just need to supply all options and the browser will take care of the rest.

I put together a dead-simple app here: https://cnfyl.csb.app/ (source here) which looks like this on iOS:

Sample search

Caveats

The space that the keyboard now populates with suggestions is usually reserved for helping you autocomplete regular words. It still does if you start typing a word that isn't an option. So arguably, the <datalist> options are primarily helping you when it's very likely that the user will type one of the suggestions.

The matching isn't great in my opinion. If you type "ea" it will match "Peaches" but I find it extremely unlikely that that's helping users. (What do you think?) If you've started typing "ea" if there's no match called "Each" or "North East" then it's probably better with no match at all.

Mind you, check out this hack (source here) which takes control of the <option> tags inside the <datalist> by having an event listener on the input. So if the input is "ea" it only matches expressions that are left-word-delimited and discard the rest.

Native filtering
Default/Native filtering

Custom filtering
Custom filtering

Conclusion

It is without a doubt the simplest autocomplete functionality you can buy. I would buy it again.

Perhaps it's not right for every application. Perhaps it's important to be able to include images in your autocomplete suggestions. Either way, the best thing to do is to park this in the back of your mind till next time you're up against the need for some sort of assisted search or choice. Especially if you predict you'll have a lot of users on mobile devices.

How to use minimalcss without a server

24 April 2020 0 comments   Web development, Node, JavaScript

https://github.com/peterbe/how-to-use-minimalcss-without-a-server


minimalcss requires that you have your HTML in a serving HTTP web page so that puppeteer can open it to find out the CSS within. Suppose, in your build system, you don't yet really have a server. Well, what you can do is start one on-the-fly and shut it down as soon as you're done.

Suppose you have .html file

First install all the stuff:

yarn add minimalcss http-server

Then run it:

const path = require("path");

const minimalcss = require("minimalcss");
const httpServer = require("http-server");

const HTML_FILE = "index.html";  // THIS IS YOURS

(async () => {
  const server = httpServer.createServer({
    root: path.dirname(path.resolve(HTML_FILE)),
  });
  server.listen(8080);

  let result;
  try {
    result = await minimalcss.minimize({
      urls: ["http://0.0.0.0:8080/" + HTML_FILE],
    });
  } catch (err) {
    console.error(err);
    throw err;
  } finally {
    server.close();
  }

  console.log(result.finalCss);
})();

And the index.html file:

<!DOCTYPE html>
<html>
    <head>
        <link rel="stylesheet" href="styles.css">
    </head>
    <body>
        <p>Hi @peterbe</p>
    </body>
</html>

And the styles.css file:

h1 {
  color: red;
}
p,
li {
  font-weight: bold;
}

And the output from running that Node script:

p{font-weight:700}

It works!

Suppose all you have is the HTML string and the CSS blob(s)

Suppose all you have is a string of HTML and a list of strings of CSS:

const fs = require("fs");
const path = require("path");

const minimalcss = require("minimalcss");
const httpServer = require("http-server");

const HTML_BODY = `
<p>Hi Peterbe</p>
`;

const CSSes = [
  `
h1 {
  color: red;
}
p,
li {
  font-weight: bold;
}
`,
];

(async () => {
  const csses = CSSes.map((css, i) => {
    fs.writeFileSync(`${i}.css`, css);
    return `<link rel="stylesheet" href="${i}.css">`;
  });
  const html = `<!doctype html><html>
  <head>${csses}</head>
  <body>${HTML_BODY}</body>
  </html>`;
  const fp = path.resolve("./index.html");
  fs.writeFileSync(fp, html);
  const server = httpServer.createServer({
    root: path.dirname(fp),
  });
  server.listen(8080);

  let result;
  try {
    result = await minimalcss.minimize({
      urls: ["http://0.0.0.0:8080/" + path.basename(fp)],
    });
  } catch (err) {
    console.error(err);
    throw err;
  } finally {
    server.close();
    fs.unlinkSync(fp);
    CSSes.forEach((_, i) => fs.unlinkSync(`${i}.css`));
  }

  console.log(result.finalCss);
})();

Truth be told, you'll need a good pinch of salt to appreciate that example code. It works but most likely, if you're into web performance so much that you're even doing this, your parameters are likely to be more complex.

Suppose you have your own puppeteer instance

In the first example above, minimalcss will create an instance of puppeteer (e.g. const browser = await puppeteer.launch()) but that means you have less control over which version of puppeteer or which parameters you need. Also, if you have to run minimalcss on a bunch of pages it's costly to have to create and destroy puppeteer browser instances repeatedly.

To modify the original example, here's how you use your own instance of puppeteer:

  const path = require("path");

+ const puppeteer = require("puppeteer");
  const minimalcss = require("minimalcss");
  const httpServer = require("http-server");

  const HTML_FILE = "index.html"; // THIS IS YOURS

  (async () => {
    const server = httpServer.createServer({
      root: path.dirname(path.resolve(HTML_FILE)),
    });
    server.listen(8080);

+   const browser = await puppeteer.launch(/* your special options */);
+
    let result;
    try {
      result = await minimalcss.minimize({
        urls: ["http://0.0.0.0:8080/" + HTML_FILE],
+       browser,
      });
    } catch (err) {
      console.error(err);
      throw err;
    } finally {
+     await browser.close();
      server.close();
    }

    console.log(result.finalCss);
  })();

Note that this doesn't buy us anything in this particular example. But that's where your imagination comes in!

Conclusion

You can see the code here as a git repo if that helps.

The point is that this might solve some of the chicken-and-egg problem you might have is that you're building your perfect HTML + CSS and you want to perfect it before you ship it.

Note also that there are other ways to run minimalcss other than programmatically. For example, minimalcss-server is minimalcss wrapped in a express server.

Another thing that you might have is that you have multiple .html files that you want to process. The same technique applies but you just need to turn it into a loop and make sure you call server.close() (and optionally await browser.close()) when you know you've processed the last file. Exercise left to the reader?