A blog and website by Peter Bengtsson

Filtered home page!
Currently only showing blog entries under the category: Linux. Clear filter

Run something forever in bash until you want to stop it

13 February 2018 0 comments   Linux

I often use this in various projects. I find it very useful. Thought I'd share to see if others find it useful.

Running something forever

Suppose you have some command that you want to run a lot. One way is to do this:

$ ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command && \
  ./ run-some-command

That runs the command 10 times. Clunky but effective.

Another alternative is to hijack the watch command. By default it waits 2 seconds between each run but if the command takes longer than 2 seconds, it'll just wait. Running...

$ watch ./ run-some-command

Is almost the same as running...:

$ clear && sleep 2 && ./ run-some-command && \
  clear && sleep 2 && ./ run-some-command && \
  clear && sleep 2 && ./ run-some-command && \
  clear && sleep 2 && ./ run-some-command && \
  clear && sleep 2 && ./ run-some-command && \
  clear && sleep 2 && ./ run-some-command && \
  ...forever until you Ctrl-C it...

But that's clunky too because you might not want it to clear the screen between each run and you get an un-necessary delay between each run.

The biggest problem is that with using watch or copy-n-paste the command many times with && between is that if you need to stop it you have to Ctrl-C and that might kill the command at a precious time.

A better solution

The important thing is that if you want to stop the command repeater, is that it gets to finish what it's working on at the moment.

Here's a great and simple solution:

#!/usr/bin/env bash
set -eo pipefail

_stopnow() {
  test -f stopnow && echo "Stopping!" && rm stopnow && exit 0 || return 0

while true
    # Below here, you put in your command you want to run:

    ./ run-some-command

Save that file as and now you can do this:

$ bash

It'll sit there and do its thing over and over. If you want to stop it (from another terminal):

$ touch stopnow

(the file stopnow will be deleted after it's spotted once)

Getting fancy

Instead of taking this bash script and editing it every time you need it to run a different command you can make it a globally available command. Here's how I do it:

#!/usr/bin/env bash
set -eo pipefail


_stopnow() {
    test -f stopnow && \
      echo "Stopping after $count iterations!" && \
      rm stopnow && exit 0 || return 0

# run if user hits control-c
  echo "Managed to do $count iterations"
  exit $?

# trap keyboard interrupt (control-c)
trap control_c SIGINT

echo "To stop this forever loop created a file called stopnow."
echo "E.g: touch stopnow"
echo ""
echo "Now going to run '$@' forever"
echo ""
while true

    eval $@

    # Do this in case you accidentally pass an argument
    # that finishes too quickly.
    sleep 1


This code in a Gist here.

Put this file in ~/bin/ and chmod +x ~/bin/

Now you can do this:

$ ./ run-some-command

If the command you want to run, forever, requires an operator you have to wrap everything in single quotation marks. For example:

$ './ run-some-command && echo "Cooling CPUs..." && sleep 10' 

Be very careful with your add_header in Nginx! You might make your site insecure

11 February 2018 0 comments   Nginx, Web development, Linux

tl;dr; When you use add_header in a location block in Nginx, it undoes all "parent" add_header directives. Dangerous!

Gist of the problem is this:

There could be several add_header directives. These directives are inherited from the previous level if and only if there are no add_header directives defined on the current level.

From the documentation on add_header

The grand but subtle mistake

Basically, I had this:

server {


    # Great security headers...
    add_header X-Frame-Options SAMEORIGIN;
    add_header X-XSS-Protection "1; mode=block";
    ...more security headers...

    location / {
        try_files    $uri /index.html;

And when you curl it, you can see that it works:

$ curl -I
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Strict-Transport-Security: max-age=63072000; includeSubdomains; preload

The mistake I had, was that I added a new add_header inside a relevant location block. If you do that, all the other "global" add_headers are dropped.

server {


    # Great security headers...
    add_header X-Frame-Options SAMEORIGIN;
    add_header X-XSS-Protection "1; mode=block";
    ...more security headers...

    location / {
        try_files    $uri /index.html;
        # NOTE! Adding some more headers here
+       add_header X-debug-whats-going-on on; 

Now, same curl command:

$ curl -I
X-debug-whats-going-on: on

Bad score on Observatory for
Yikes! Now those other useful security headers are gone!

Here are your options:

  1. Don't add headers like that inside location blocks. Yeah, that's not always a choice.
  2. Copy-n-paste all the general security add_header blocks into the location blocks where you have to have "custom" add_header entries.
  3. Use an include file, see below.

How to include files

First create a new file, like /etc/nginx/snippets/general-security-headers.conf then put this into it:

# Great security headers...
add_header X-Frame-Options SAMEORIGIN;
add_header X-XSS-Protection "1; mode=block";
...more security headers...
# More realistically, see

Now, instead of saying these add_header lines in your /etc/nginx/sites-enabled/example.conf change that to:

server {


    include /etc/nginx/snippets/general-security-headers.conf;

    location / {
        try_files    $uri /index.html;
        # Note! This gets included *again* because
        # this location block needs its own custom add_header
        # directives.
        include /etc/nginx/snippets/general-security-headers.conf;
        # NOTE! Adding some more headers here
        add_header X-debug-whats-going-on on; 

(You need to use your imagination that a real Nginx config site probably has many different more complex location directives)

It's arguably a bit clunky but it works and it's the best of both worlds. The right security headers for all locations and ability to set custom add_header directives for specific locations.


I'm most disappointed in myself for not noticing. Not for not noticing this in the Nginx documentation, but that I didn't check my security headers on more than one path. But I'm also quite disappointed in Nginx for this rather odd behaviour. To quote my security engineer at Mozilla, April King:

"add" doesn't usually mean "subtract everything else"

She agreed with me that the way it works is counter-intuitive and showed me this snippet which uses include files the same way.

Make .local domains NOT slow in macOS

29 January 2018 0 comments   MacOSX, Linux


I used to have a bunch of domains in /etc/hosts like for testing Nginx configurations locally. But then it became impossible to test local sites in Chrome because an .dev is force redirected to HTTPS. No problem, so I use .local instead. However, DNS resolution was horribly slow. For example:

time curl -I http://peterbecom.local/about/minimal.css > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0  1763    0     0    0     0      0      0 --:--:--  0:00:05 --:--:--     0
curl -I http://peterbecom.local/about/minimal.css > /dev/null  0.01s user 0.01s system 0% cpu 5.585 total

5.6 seconds to open a local file in Nginx.


Here's that one weird trick to solve it: Add an entry for IPv4 AND IPv6 in /etc/hosts.

So now I have:

▶ cat /etc/hosts | grep peterbecom       peterbecom.local
::1             peterbecom.local


Ah! Much better. Thing are fast again:

time curl -I http://peterbecom.local/about/minimal.css > /dev/null
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0  1763    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0
curl -I http://peterbecom.local/about/minimal.css > /dev/null  0.01s user 0.01s system 37% cpu 0.041 total

0.04 seconds instead of 5.6.

How to rotate a video on OSX with ffmpeg

03 January 2018 1 comment   MacOSX, Linux

Every now and then, I take a video with my iPhone and even though I hold the camera in landscape mode, the video gets recorded in portrait mode. Probably because it somehow started in portrait and didn't notice that I rotated the phone.

So I'm stuck with a 90° video. Here's how I rotate it:

ffmpeg -i -vf "transpose=2" ~/Desktop/

then I check that ~/Desktop/ looks like it should.

I can't remember where I got this command originally but I've been relying on my bash history for a looong time so it's best to write this down.
The "transpose=2" means 90° counter clockwise. "transpose=1" means 90° clockwise.

What is ffmpeg??

If you're here because you Googled it and you don't know what ffmpeg is, it's a command line program where you can "programmatically" do almost anything to videos such as conversion between formats, put text in, chop and trim videos. To install it, install Homebrew then type:

brew install ffmpeg

Unzip benchmark on AWS EC2 c3.large vs c4.large

29 November 2017 16 comments   Go, Mozilla, Linux, Python

Datadog monitoring of time to dump and extract zip files in staging server
This web app I'm working on gets a blob of bytes from a HTTP POST. The nature of the blob is a 100MB to 1,100MB blob of a zip file. What my app currently does is that it takes this byte buffer, uses Python's built in zipfile to extract all its content to a temporary directory. A second function then loops over the files within this extracted tree and processes each file in multiple threads with concurrent.futures.ThreadPoolExecutor. Here's the core function itself:

def dump_and_extract(root_dir, file_buffer):
    zf = zipfile.ZipFile(file_buffer)

So far so good.

Speed Speed Speed

I quickly noticed that this is amounting to quite a lot of time spent doing the unzip and the writing to disk. What to do????

At first I thought I'd shell out to good old unzip. E.g. unzip -d /tmp/tempdirextract /tmp/ but that has two flaws:

1) I'd first have to dump the blob of bytes to disk and do the overhead of shelling out (i.e. Python subprocess)
2) It's actually not faster. Did some experimenting and got the same results at Alex Martelli in this Stackoverflow post

Compute EC2 instance types
What about disk speed? Yeah, this is likely to be a part of the total time. The servers that run the service runs on AWS EC2 c4.large. This only has EBS (Elastic Block Storage). However, AWS EC2 c3.large looks interesting since it's using SSD disks. That's probably a lot faster. Right?

Note! For context, the kind of .zip files I'm dealing with contain many small files and often 1-2 really large ones.

EC2s Benchmarking

I create two EC2 nodes to experiment on. One c3.large and one c4.large. Both running Ubuntu 16.04.

Next, I have this little benchmarking script which loops over a directory full of .zip files between 200MB-600MB large. Roughly 10 of them. It then loads each one, one at a time, into memory and calls the dump_and_extract. Let's run it on each EC2 instance:

On c4.large

c4.large$ python3 /tmp/massive-symbol-zips
138.2MB/s            291.1MB              2.107s
146.8MB/s            314.5MB              2.142s
144.8MB/s            288.2MB              1.990s
84.5MB/s             532.4MB              6.302s
146.6MB/s            314.2MB              2.144s
136.5MB/s            270.7MB              1.984s
85.9MB/s             518.9MB              6.041s
145.2MB/s            306.8MB              2.113s
127.8MB/s            138.7MB              1.085s
107.3MB/s            454.8MB              4.239s
141.6MB/s            251.2MB              1.774s

Average speed: 127.7MB/s
Median speed:  138.2MB/s

Average files created:       165
Average directories created: 129

On c3.large

c3.large$ python3 -t /mnt/extracthere /tmp/massive-symbol-zips
105.4MB/s            290.9MB              2.761s
98.1MB/s             518.5MB              5.287s
108.1MB/s            251.2MB              2.324s
112.5MB/s            294.3MB              2.615s
113.7MB/s            314.5MB              2.767s
106.3MB/s            291.5MB              2.742s
104.8MB/s            291.1MB              2.778s
114.6MB/s            248.3MB              2.166s
114.2MB/s            248.2MB              2.173s
105.6MB/s            298.1MB              2.823s
106.2MB/s            297.6MB              2.801s
98.6MB/s             521.4MB              5.289s

Average speed: 107.3MB/s
Median speed:  106.3MB/s

Average files created:       165
Average directories created: 127

What the heck!? The SSD based instance is 23% slower!

I ran it a bunch of times and the average and median numbers are steady. c4.large is faster than c3.large at unzipping large blobs to disk. So much for that SSD!

Something Weird Is Going On

It's highly likely that the unzipping work is CPU bound and that most of those, for example, 5 seconds is spent unzipping and only a small margin is the time it takes to write to disk.

If the unzipping CPU work is the dominant "time consumer" why is there a difference at all?!

Or, is the "compute power" the difference between c3 and c4 and disk writes immaterial?

For the record, this test clearly demonstrates that the locally mounted SSD drive is 600% faster than ESB.

c3.large$ dd if=/dev/zero of=/tmp/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 16.093 s, 66.7 MB/s
c3.large$ sudo dd if=/dev/zero of=/mnt/1gbtest bs=16k count=65536
65536+0 records in
65536+0 records out
1073741824 bytes (1.1 GB, 1.0 GiB) copied, 2.62728 s, 409 MB/s

Let's try again. But instead of using c4.large and c3.large, let's use the beefier c4.4xlarge and c3.4xlarge. Both have 16 vCPUs.


c4.4xlarge$ python3 /tmp/massive-symbol-zips
130.6MB/s            553.6MB              4.238s
149.2MB/s            297.0MB              1.991s
129.1MB/s            529.8MB              4.103s
116.8MB/s            407.1MB              3.486s
147.3MB/s            306.1MB              2.077s
151.9MB/s            248.2MB              1.634s
140.8MB/s            292.3MB              2.076s
146.8MB/s            288.0MB              1.961s
142.2MB/s            321.0MB              2.257s

Average speed: 139.4MB/s
Median speed:  142.2MB/s

Average files created:       148
Average directories created: 117


c3.4xlarge$ python3 -t /mnt/extracthere /tmp/massive-symbol-zips
95.1MB/s             502.4MB              5.285s
104.1MB/s            303.5MB              2.916s
115.5MB/s            313.9MB              2.718s
105.5MB/s            517.4MB              4.904s
114.1MB/s            288.1MB              2.526s
103.3MB/s            555.9MB              5.383s
114.0MB/s            288.0MB              2.526s
109.2MB/s            251.2MB              2.300s
108.0MB/s            291.0MB              2.693s

Average speed: 107.6MB/s
Median speed:  108.0MB/s

Average files created:       150
Average directories created: 119

What's going on!? The time it takes to unzip and write to disk is, on average, the same for c3.large as c3.4xlarge!

Is Go Any Faster?

I need a break. As mentioned above, the unzip command line program is not any better than doing it in Python. But Go is faster right? Right?

Please first accept that I'm not a Go programmer even though I can use it to build stuff but really my experience level is quite shallow.

Here's the Go version. Critical function that does the unzipping and extraction to disk here:

func DumpAndExtract(dest string, buffer []byte, name string) {
    size := int64(len(buffer))
    zipReader, err := zip.NewReader(bytes.NewReader(buffer), size)
    if err != nil {
    for _, f := range zipReader.File {
        rc, err := f.Open()
        if err != nil {
        defer rc.Close()
        fpath := filepath.Join(dest, f.Name)
        if f.FileInfo().IsDir() {
            os.MkdirAll(fpath, os.ModePerm)
        } else {
            // Make File
            var fdir string
            if lastIndex := strings.LastIndex(fpath, string(os.PathSeparator)); lastIndex > -1 {
                fdir = fpath[:lastIndex]
            err = os.MkdirAll(fdir, os.ModePerm)
            if err != nil {
            f, err := os.OpenFile(
                fpath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, f.Mode())
            if err != nil {
            defer f.Close()

            _, err = io.Copy(f, rc)
            if err != nil {

And the measurement is done like this:

size := int64(len(content))
t0 := time.Now()
DumpAndExtract(tmpdir, content, filename)
t1 := time.Now()
speed := float64(size) / t1.Sub(t0).Seconds()

It's not as sophisticated (since it's only able to use /tmp) but let's just run it see how it compares to Python:

c4.4xlarge$ mkdir ~/GO
c4.4xlarge$ export GOPATH=~/GO
c4.4xlarge$ go get
c4.4xlarge$ go build unzips.go
c4.4xlarge$ ./unzips /tmp/massive-symbol-zips
56MB/s         407MB          7.27804954
74MB/s         321MB          4.311504933
75MB/s         288MB          3.856798853
75MB/s         292MB          3.90972474
81MB/s         248MB          3.052652168
58MB/s         530MB          9.065985117
59MB/s         554MB          9.35237202
75MB/s         297MB          3.943132388
74MB/s         306MB          4.147176578

Average speed:    70MB/s
Median speed:     81MB/s

So... Go is, on average, 40% slower than Python in this scenario. Did not expect that.

In Conclusion

No conclusion. Only confusion.

I thought this would be a lot clearer and more obvious. Yeah, I know it's crazy to measure two things at the same time (unzip and disk write) but the whole thing started with a very realistic problem that I'm trying to solve. The ultimate question was; will the performance benefit from us moving the web servers from AWS EC2 c4.large to c3.large and I think the answer is no.

UPDATE (Nov 30, 2017)

Here's a horrible hack that causes the extraction to always go to /dev/null:

class DevNullZipFile(zipfile.ZipFile):
    def _extract_member(self, member, targetpath, pwd):
        # member.is_dir() only works in Python 3.6
        if member.filename[-1] == '/':
            return targetpath
        dest = '/dev/null'
        with, pwd=pwd) as source, open(dest, "wb") as target:
            shutil.copyfileobj(source, target)
        return targetpath

def dump_and_extract(root_dir, file_buffer, klass):
    zf = klass(file_buffer)

And here's the outcome of running that:

c4.4xlarge$ python3 --dev-null /tmp/massive-symbol-zips
170.1MB/s            297.0MB              1.746s
168.6MB/s            306.1MB              1.815s
147.1MB/s            553.6MB              3.765s
132.1MB/s            407.1MB              3.083s
145.6MB/s            529.8MB              3.639s
175.4MB/s            248.2MB              1.415s
163.3MB/s            321.0MB              1.965s
162.1MB/s            292.3MB              1.803s
168.5MB/s            288.0MB              1.709s

Average speed: 159.2MB/s
Median speed:  163.3MB/s

Average files created:       0
Average directories created: 0

I ran it a few times to make sure the numbers are stable. They are. This is on the c4.4xlarge.

So, the improvement of writing to /dev/null instead of the ESB /tmp is 15%. Kinda goes to show how much of the total time is spent reading the ZipInfo file object.

For the record, the same comparison on the c3.4xlarge was 30% improvement when using /dev/null.

Also for the record, if I replace that line shutil.copyfileobj(source, target) above with pass, the average speed goes from 159.2MB/s to 112.8GB/s but that's not a real value of any kind.

UPDATE (Nov 30, 2017)

Here's the same benchmark using c5.4xlarge instead. So, still EBS but...
"3.0 GHz Intel Xeon Platinum processors with new Intel Advanced Vector Extension 512 (AVX-512) instruction set"

Let's run it on this supposedly faster CPU:

c5.4xlarge$ python3 /tmp/massive-symbol-zips
165.6MB/s            314.6MB              1.900s
163.3MB/s            287.7MB              1.762s
155.2MB/s            278.6MB              1.795s
140.9MB/s            513.2MB              3.643s
137.4MB/s            556.9MB              4.052s
134.6MB/s            531.0MB              3.946s
165.7MB/s            314.2MB              1.897s
158.1MB/s            301.5MB              1.907s
151.6MB/s            253.8MB              1.674s
146.9MB/s            502.7MB              3.422s
163.7MB/s            288.0MB              1.759s

Average speed: 153.0MB/s
Median speed:  155.2MB/s

Average files created:       150
Average directories created: 119

So that is, on average, 10% faster than c4.4xlarge.

Is it 10% more expensive? For a 1-year reserved instance, it's $0.796 versus $0.68 respectively. I.e. 15% more expensive. In other words, in this context it's 15% more $$$ for 10% more processing power.

UPDATE (Jan 24, 2018)

I can almost not believe it!

Thanks you Oliver who discovered (see comment below) a blaring mistake in my last conclusion. The for reserved instances (which is what we use on my Mozilla production servers) the c5.4xlarge is actually cheaper than c4.4xlarge. What?!

In my previous update I compared c4.4xlarge and c5.4xlarge and concluded that c5.4xlarge is 10% faster but 15% more expensive. That actually made sense. Fancier servers, more $$$. But it's not like that in the real world. See for yourself:



How to create-react-app with Docker

17 November 2017 11 comments   Docker, ReactJS, Javascript, Web development, Linux

Why would you want to use Docker to do React app work? Isn't Docker for server-side stuff like Python and Golang etc? No, all the benefits of Docker apply to JavaScript client-side work too.

So there are three main things you want to do with create-react-app; dev server, running tests and creating build artifacts. Let's look at all three but using Docker.

Create-react-app first

If you haven't already, install create-react-app globally:

▶ yarn global add create-react-app

And, once installed, create a new project:

▶ create-react-app docker-create-react-app
...lots of output...

▶ cd docker-create-react-app
▶ ls    node_modules package.json public       src          yarn.lock

We won't need the node_modules here in the project directory. Instead, when building the image we're going let node_modules stay inside the image. So you can go ahead and... rm -fr node_modules.

Create the Dockerfile

Let's just dive in. This Dockerfile is the minimum:

FROM node:8

ADD yarn.lock /yarn.lock
ADD package.json /package.json

ENV NODE_PATH=/node_modules
ENV PATH=$PATH:/node_modules/.bin
RUN yarn

ADD . /app

EXPOSE 35729

ENTRYPOINT ["/bin/bash", "/app/"]
CMD ["start"]

A couple of things to notice here.
First of all we're basing this on the official Node v8 repository on Docker Hub. That gives you a Node and Yarn by default.

Note how the NODE_PATH environment variable puts the node_modules in the root of the container. That's so that it doesn't get added in "here" (i.e. the current working directory). If you didn't do this, the node_modules directory would be part of the mounted volume which not only slows down Docker (since there are so many files) it also isn't necessary to see those files.

Note how the ENTRYPOINT points to That's a file we need to create too, alongside the Dockerfile file.

#!/usr/bin/env bash
set -eo pipefail

case $1 in
    # The '| cat' is to trick Node that this is an non-TTY terminal
    # then react-scripts won't clear the console.
    yarn start | cat
    yarn build
    yarn test $@
    exec "$@"

Lastly, as a point of convenience, note that the default CMD is "start". That's so that when you simply run the container the default thing it does is to run yarn start.

Build container

Now let's build it:

▶ docker image build -t react:app .

The -t react:app is up to you. It doesn't matter so much what it is unless you're going to upload your container the a registry. Then you probably want the repository to be something unique.

Let's check that the build is there:

▶ docker image ls react:app
REPOSITORY          TAG                 IMAGE ID            CREATED             SIZE
react               app                 3ee5c7596f57        13 minutes ago      996MB

996MB! The base Node image is about ~700MB and the node_modules directory (for a clean new create-react-app) is ~160MB (at the time of writing). What the remaining difference is, I'm not sure. But it's empty calories and easy to lose. When you blow away the built image (docker image rmi react:app) your hard drive gets all that back and no actual code is lost.

Before we run it, lets go inside and see what was created:

▶ docker container run -it react:app bash
root@996e708a30c4:/app# ls
Dockerfile  package.json  public  src  yarn.lock
root@996e708a30c4:/app# du -sh /node_modules/
148M    /node_modules/
root@996e708a30c4:/app# sw-precache
Total precache size is about 355 kB for 14 resources.
service-worker.js has been generated with the service worker contents.

The last command (sw-precache) was just to show that executables in /node_modules/.bin are indeed on the $PATH and can be run.

Run container

Now to run it:

▶ docker container run -it -p 3000:3000 react:app
yarn run v1.3.2
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view docker-create-react-app in the browser.

  Local:            http://localhost:3000/
  On Your Network:

Note that the development build is not optimized.
To create a production build, use yarn build.

Default app running

Pretty good. Open http://localhost:3000 in your browser and you should see the default create-react-app app.

Next step; Warm reloading

create-react-app does not support hot reloading of components. But it does support web page reloading. As soon as a local file is changed, it sends a signal to the browser (using WebSockets) to tell it to... document.location.reload().

To make this work, we need to do two things:
1) Mount the current working directory into the Docker container
2) Expose the WebSocket port

The WebSocket thing is set up by exposing port 35729 to the host (-p 35729:35729).

Below is an example running this with a volume mount and both ports exposed.

▶ docker container run -it -p 3000:3000 -p 35729:35729 -v $(pwd):/app react:app
yarn run v1.3.2
$ react-scripts start
Starting the development server...

Compiled successfully!

You can now view docker-create-react-app in the browser.

  Local:            http://localhost:3000/
  On Your Network:

Note that the development build is not optimized.
To create a production build, use yarn build.

Compiled successfully!
Compiled with warnings.

  Line 7:  'neverused' is assigned a value but never used  no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

Failed to compile.

Module not found: Can't resolve './Apps.css' in '/app/src'

In the about example output. First I make a harmless save in the src/App.js file just to see that the dev server notices and that my browser reloads when I did that. That's where it says

Compiled successfully!

Secondly, I make an edit that triggers a warning. That's where it says:

Compiled with warnings.

  Line 7:  'neverused' is assigned a value but never used  no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

And lastly I make an edit by messing with the import line

Failed to compile.

Module not found: Can't resolve './Apps.css' in '/app/src'

This is great! Isn't create-react-app wonderful?

Build build :)

There are many things you can do with the code you're building. Let's pretend that the intention is to build a single-page-app and then take the static assets (including the index.html) and upload them to a public CDN or something. To do that we need to generate the build directory.

The trick here is to run this with a volume mount so that when it creates /app/build (from the perspective) of the container, that directory effectively becomes visible in the host.

▶ docker container run -it -v $(pwd):/app react:app build
yarn run v1.3.2
$ react-scripts build
Creating an optimized production build...
Compiled successfully.

File sizes after gzip:

  35.59 KB  build/static/js/main.591fd843.js
  299 B     build/static/css/main.c17080f1.css

The project was built assuming it is hosted at the server root.
To override this, specify the homepage in your package.json.
For example, add this to build it for GitHub Pages:

  "homepage" : "",

The build folder is ready to be deployed.
You may serve it with a static server:

  yarn global add serve
  serve -s build

Done in 5.95s.

Now, on the host:

▶ tree build
├── asset-manifest.json
├── favicon.ico
├── index.html
├── manifest.json
├── service-worker.js
└── static
    ├── css
    │   ├── main.c17080f1.css
    │   └──
    ├── js
    │   ├── main.591fd843.js
    │   └──
    └── media
        └── logo.5d5d9eef.svg

4 directories, 10 files

The contents of that file you can now upload to a CDN some public Nginx server that points to this as the root directory.

Running tests

This one is so easy and obvious now.

▶ docker container run -it -v $(pwd):/app react:app test

Note the that we're setting up a volume mount here again. Since the test runner is interactive it sits and waits for file changes and re-runs tests immediately, it's important to do the mount now.

All regular jest options work too. For example:

▶ docker container run -it -v $(pwd):/app react:app test --coverage
▶ docker container run -it -v $(pwd):/app react:app test --help

Debugging the node_modules

First of all, when I say "debugging the node_modules", in this context, I'm referring to messing with node_modules whilst running tests or running the dev server.

One way to debug the node_modules used is to enter a bash shell and literally mess with the files inside it. First, start the dev server (or start the test runner) and give the container a name:

▶ docker container run -it -p 3000:3000 -p 35729:35729 -v $(pwd):/app --name mydebugging react:app

Now, in a separate terminal start bash in the container:

▶ docker exec -it mydebugging bash

Once you're in you can install an editor and start editing files:

root@2bf8c877f788:/app# apt-get update && apt-get install jed
root@2bf8c877f788:/app# jed /node_modules/react/index.js

As soon as you make changes to any of the files, the dev server should notice and reload.

When you stop the container all your changes will be reset. So if you had to sprinkle the node_modules with console.log('WHAT THE HECK!') all of those disappear when the container is stopped.

NodeJS shell

This'll come as no surprise by now. You basically run bash and you're there:

▶ docker container run -it -v $(pwd):/app react:app bash
root@2a21e8206a1f:/app# node
> [] + 1


When I look back at all the commands above, I can definitely see how it's pretty intimidating and daunting. So many things to remember and it's got that nasty feeling where you feel like your controlling your development environment through unwieldy levers rather than your own hands.

But think of the fundamental advantages too! It's all encapsulated now. What you're working on will be based on the exact same version of everything as your teammate, your dev server and your production server are using.



In my (Mozilla Services) work, the projects I work on, I actually use docker-compose for all things. And I have a Makefile to help me remember all the various docker-compose commands (thanks Jannis & Will!). One definitely neat thing you can do with docker-compose is start multiple containers. Then you can, with one command, start a Django server and the create-react-app dev server with one command. Perhaps a blog post for another day.

Concurrent Gzip in Python

13 October 2017 6 comments   Docker, Linux, Python

Suppose you have a bunch of files you need to Gzip in Python; what's the optimal way to do that? In serial, to avoid saturating the GIL? In multiprocessing, to spread the load across CPU cores? Or with threads?

I needed to know this for since it does a lot of Gzip'ing. In clients upload a zip file full of files. A lot of them are plain text and when uploaded to S3 it's best to store them gzipped. Basically it does this:

def upload_sym_file(s3_client, payload, bucket_name, key_name):
    file_buffer = BytesIO()
    with gzip.GzipFile(fileobj=file_buffer, mode='w') as f:
        f.write(payload), os.SEEK_END)
    size = file_buffer.tell()
    print(f"Uploaded {size}")

Another important thing to consider before jumping into the benchmark is to appreciate the context of this application; the bundles of files I need to gzip are often many but smallish. The average file size of the files that need to be gzip'ed is ~300KB. And each bundle is between 5 to 25 files.

The Benchmark

For the sake of the benchmark, here, all it does it figure out the size of each gzipped buffer and reports that as a list.

f1 - Basic serial

def f1(payloads):
    sizes = []
    for payload in payloads:
    return sizes

f2 - Using multiprocessing.Pool

def f2(payloads):  # multiprocessing
    sizes = []
    with multiprocessing.Pool() as p:
        sizes =, payloads)
    return sizes

f3 - Using concurrent.futures.ThreadPoolExecutor

def f3(payloads):  # concurrent.futures.ThreadPoolExecutor
    sizes = []
    futures = []
    with concurrent.futures.ThreadPoolExecutor() as executor:
        for payload in payloads:
        for future in concurrent.futures.as_completed(futures):
    return sizes

f4 - Using concurrent.futures.ProcessPoolExecutor

def f4(payloads):  # concurrent.futures.ProcessPoolExecutor
    sizes = []
    futures = []
    with concurrent.futures.ProcessPoolExecutor() as executor:
        for payload in payloads:
        for future in concurrent.futures.as_completed(futures):
    return sizes

Note that when using asynchronous methods like this, the order of items returned is not the same as they're submitted. An easy remedy if you need the results back in order is to not use a list but to use a dictionary. Then you can track each key (or index if you like) to a value.

The Results

I ran this on three different .zip files of different sizes. To get some sanity in the benchmark I made it print out how many bytes it has to process and how many bytes the gzip will manage to do.

# files 66
Total bytes to gzip 140.69MB
Total bytes gzipped 14.96MB
Total bytes shaved off by gzip 125.73MB

# files 103
Total bytes to gzip 331.57MB
Total bytes gzipped 66.90MB
Total bytes shaved off by gzip 264.67MB

# files 26
Total bytes to gzip 86.91MB
Total bytes gzipped 8.28MB
Total bytes shaved off by gzip 78.63MB

Sorry for being eastetically handicapped when it comes to using Google Docs but here goes...

This demonstrates the median times it takes each function to complete, each of the three different files.

In all three files I tested, clearly doing it serially (f1) is the worst. Supposedly since my laptop has more than one CPU core and the others are not being used. Another pertinent thing to notice is that when the work is really big, (the middle 4 bars) the difference isn't as big doing things serially compared to concurrently.

That second zip file contained a single file that was 80MB. The largest in the other two files were 18MB and 22MB.

This is the mean across all medians grouped by function and each compared to the slowest.

I call this the "bestest graph". It's a combination across all different sizes and basically concludes which one is the best, which clearly is function f3 (the one using concurrent.futures.ThreadPoolExecutor).

CPU Usage

This is probably the best way to explain how the CPU is used; I ran each function repeatedly, then opened gtop and took a screenshot of the list of processes sorted by CPU percentage.

f1 - Serially

No distractions but it takes 100% of one CPU to work.

f2 - multiprocessing.Pool

My laptop has 8 CPU cores, but I don't know why I see 9 Python processes here.
I don't know why each CPU isn't 100% but I guess there's some administrative overhead to start processes by Python.

f3 - concurrent.futures.ThreadPoolExecutor

One process, with roughly 5 x 8 = 40 threads GIL swapping back and forth but all in all it manages to keep itself very busy since threads are lightweight to share data to.

f4 - concurrent.futures.ProcessPoolExecutor

This is actually kinda like multiprocessing.Pool but with a different (arguably easier) API.


By a small margin concurrent.futures.ThreadPoolExecutor won. That's despite not being able to use all CPU cores. This, pseudo scientifically, proves that the overhead of starting the threads is (remember average number of files in each .zip is ~65) more worth it than being able to use all CPUs.


There's an interesting twist to this! At least for my use case...

In the application I'm working on, there's actually a lot more that needs to be done other than just gzip'ping some blobs of files. For each file I need to a HEAD query to AWS S3 and an PUT query to AWS S3 too. So what I actually need to do is create an instance of client = botocore.client.S3 that I use to call client.list_objects_v2 and client.put_object.

When you create an instance of botocore.client.S3, automatically botocore will instanciate itself with credentials from os.environ['AWS_ACCESS_KEY_ID'] etc. (or read from some /.aws file). Once created, if you ask it to do many different network operations, internally it relies on urllib3.poolmanager.PoolManager which is a list of 10 HTTP connections that get reused.

So when you run the serial version you can re-use the client instance for every file you process but you can only use one HTTP connection in the pool. With the concurrent.futures.ThreadPoolExecutor it can not only re-use the same instance of botocore.client.S3 it can cycle through all the HTTP connections in the pool.

The process based alternatives like multiprocessing.Pool and concurrent.futures.ProcessPoolExecutor can not re-use the botocore.client.S3 instance since it's not pickle'able. And it has to create a new HTTP connection for every single file.

So, the conclusion of the above rambling is that concurrent.futures.ThreadPoolExecutor is really awesome! Not only did it perform excellently in the Gzip benchmark, it has the added bonus that it can share instance objects and HTTP connections.

A neat trick to zip a git repo with a version number

01 September 2017 4 comments   Web development, Linux

I have this WebExtension addon. It's not very important. Just a web extension that does some hacks to GitHub pages when I open them in Firefox. The web extension is a folder with a manifest.json, icons/icon-48.png, tricks.js, etc. To upload it to I first have to turn the whole thing into a .zip file that I can upload.

So I discovered a neat way to make that zip file. It looks like this:


DESTINATION=build-`cat manifest.json | jq -r .version`.zip
git archive --format=zip master > $DESTINATION

echo "Created..."

You run it and it creates a file containing all the files that are checked into the git repo. So it discards my local "junk" such as backup files or other things that are mentioned in .gitignore (and .git/info/exclude).

I bet someone's going to laugh and say "Duhh! Of course!" but I didn't know you can do that easily. Hopefully posting this it'll help someone trying to do something similar.

Note; this depends on jq which is an amazing little program.

Why didn't I know about machma?!

07 June 2017 0 comments   Go, MacOSX, Linux

"machma - Easy parallel execution of commands with live feedback"

This is so cool!

It's a command line program that makes it really easy to run any command line program in parallel. I.e. in separate processes with separate CPUs.

Something network bound

Suppose I have a file like this:

▶ wc -l urls.txt
      30 urls.txt

▶ cat urls.txt | head -n 3

If I wanted to download all of these files with wget the traditional way would be:

▶ time cat urls.txt | xargs wget -q -P ./downloaded/
cat urls.txt  0.00s user 0.00s system 53% cpu 0.005 total
xargs wget -q -P ./downloaded/  0.07s user 0.24s system 2% cpu 14.913 total

▶ ls downloaded | wc -l

▶ du -sh downloaded
 21M    downloaded

So it took 15 seconds to download 30 files that totals 21MB.

Now, let's do it with machama instead:

▶ time cat urls.txt | machma -- wget -q -P ./downloaded/ {}
cat urls.txt  0.00s user 0.00s system 55% cpu 0.004 total
machma -- wget -q -P ./downloaded/ {}  0.53s user 0.45s system 12% cpu 7.955 total

That uses 8 separate processors (because my laptop has 8 CPUs).
Because 30 / 8 ~= 4, it roughly does 4 iterations.

But note, it took 15 seconds to download 30 files synchronously. That's an average of 0.5s per file. The reason it doesn't take 4x0.5 seconds (instead of 8 seconds) is because it's at the mercy of bad luck and some of those 30 spiking a bit.

Something CPU bound

Now let's do something really CPU intensive; Guetzli compression.

▶ ls images | wc -l

▶ time find images -iname '*.jpg' | xargs -I {} guetzli --quality 85 {} compressed/{}
find images -iname '*.jpg'  0.00s user 0.00s system 40% cpu 0.009 total
xargs -I {} guetzli --quality 85 {} compressed/{}  35.74s user 0.68s system 99% cpu 36.560 total

And now the same but with machma:

▶ time find images -iname '*.jpg' | machma -- guetzli --quality 85 {} compressed/{}

processed 7 items (0 failures) in 0:10
find images -iname '*.jpg'  0.00s user 0.00s system 51% cpu 0.005 total
machma -- guetzli --quality 85 {} compressed/{}  58.47s user 0.91s system 546% cpu 10.857 total

Basically, it took only 11 seconds. This time there were fewer images (7) than there was CPUs (8), so basically the poor computer is doing super intensive CPU (and memory) work across all CPUs at the same time. The average time for each of these files is ~5 seconds so it's really interesting that even if you try to do this in parallel execution instead of taking a total of ~5 seconds, it took almost double that.

In conclusion

Such a handy tool to have around for command line stuff. I haven't looked at its code much but it's almost a shame that the project only has 300+ GitHub stars. Perhaps because it's kinda complete and doesn't need much more work.

Also, if you attempt all the examples above you'll notice that when you use the ... | xargs ... approach the stdout and stderr is a mess. For wget, that's why I used -q to silence it a bit. With machma you get a really pleasant color coded live output that tells you the state of the queue, possible failures and an ETA.

Experimenting with Guetzli

24 May 2017 0 comments   MacOSX, Web development, Linux

tl;dr; Guetzli, the new JPEG compression program from Google can save a bytes with little loss of quality.

Inspired by this blog post about Guetzli I thought I'd try it out with something that's relevant to my project, 300x300 JPGs that can be heavily compressed.

So I installed it (with Homebrew) on my MacBook Pro (late 2013) and picked 7 JPGs I had, and use in SongSearch. Which is interesting because these JPEGs have already been compressed once. They are taken from converting from much larger PNGs with PIL (Pillow) at quality rating 80%. In other words, this is Guetzli on top of PIL.

I ran one iteration for every image for the following qualities: 85%, 90%, 95%, 99%, 100%.

The results on the size are as follows:

Image Average Size (bytes) % Smaller
original 23497.0 0
85% 16025.4 32%
90% 18829.4 20%
95% 21338.1 9.2%
99% 22705.3 3.4%
100% 22919.7 2.5%

So, for example, if you choose the 90% quality you save, on average, 4,667B (4.6KB).

As you might already know, Guetzli is incredibly memory hungry and very very slow. On average each image compression took on average 4-6 seconds (higher quality, shorter times). Meaning, if you like Guetzli you probably need to build around it so that the compression happens in a build step or async somewhere and ideally you don't want to run too many compressions in parallel as it might cause CPU and memory overloading.

Now, how does it look?

Go to and stare at the screen to see if you can A) see which one is more compressed and B) if the one that is more compressed is too low quality.

What do you think?

Is it worth it?

Is the quality drop too much to save 10% on image sizes?

Please share your thoughts. Perhaps we can re-do this experiment with some slightly larger JPGs.