Peterbe.com

A blog and website by Peter Bengtsson

Filtered home page!
Currently only showing blog entries under the category: Javascript. Clear filter

From jQuery to Cash

18 June 2019 0 comments   Javascript, Web development


tl;dr; The main JavaScript bundle goes from 29KB to 6KB by switching from JQuery to Cash. Both with Brotli compression.

In Web Performance, every byte counts. Downloading less stuff means faster network operations but for JavaScript it also means less to parse and execute. This site used use JQuery 3.4.1 but now uses Cash 4.1.2. It requires some changes to how you use $ and most noticeable is the lack of animations and $.ajax.

I still stand by the $ function. It's great when you have a regular (static) website that isn't a single page app but still needs a little bit of interactive JavaScript functionality. On this site, I use it for making the commenting work and some various navigation/header stuff.

Switching to Cash means you have to stop doing things like $.getJSON() and $('.classname').fadeIn(400) which, in a sense, gives Cash an unfair advantage because those bits take up a large portion of the bundle size. Yes, there is a custom build of jQuery without those but check out this size comparison:

BundleUncompressed (bytes)Gzipped (bytes)
jQuery 3.4.188,14530,739
jQuery 3.4.1 Slim71,03724,403
Cash 4.1.214,8185,167

I still needed a fadeIn function, which I was relying on from jQuery, but to remedy that I just copied one of these from youmightnotneedjquery.com. It would be better to not do that an use a CSS transform instead but, well, I'm only human.

Before: with jQuery
Before: with jQuery

Another thing you'll need to replace is to switch from $.ajax to fetch but there are good polyfills but I haven't bothered with polyfills because the tiny percentage of visitors I have, without fetch support still get a working site but can't post comments.

I was contemplating doing what GitHub did in 2018 which was to replace jQuery with real vanilla JavaScript code but it didn't seem worth it now that Cash is only 5KB (gzipped) and it's an actively maintained project too.

Before: with jQuery
Before: with jQuery

After: with Cash
After: with Cash

WebSockets vs. XHR 2019

05 May 2019 0 comments   Javascript, Web Performance, Web development

https://sockshootout.app/


Back in 2012, I did an experiment to compare if and/or how much faster WebSockets are compared to AJAX (aka. XHR). It would be a "protocol benchmark" to see which way was faster to schlep data back and forth between a server and a browser in total. The conclusion of that experiment was that WebSockets were faster but when you take latency into account, the difference was minimal. Considering the added "complexities" of WebSockets (keeping connections, results don't come where the request was made, etc.) it's not worth it.

But, 7 years later browsers are very different. Almost all browsers that support JavaScript also support WebSockets. HTTP/2 might make things better too. And perhaps the WebSocket protocol is just better implemented in the browsers. Who knows? An experiment knows.

So I made a new experiment with similar tech. The gist of the code is best explained with some code:

// Inside App.js

loopXHR = async count => {
  const res = await fetch(`/xhr?count=${count}`);
  const data = await res.json();
  const nextCount = data.count;
  if (nextCount) {
    this.loopXHR(nextCount);
  } else {
    this.endXHR();
  }
};

Basically, pick a big number (e.g. 100) and send that integer to the server which does this:

# Inside app.py 

# from the the GET querystring "?count=123"
count = self.get_argument("count")   
data = {"count": int(count) - 1}
self.write(json.dumps(data))

So the browser keeps sending the number back to the server that decrements it and when the server returns 0 the loop ends and you look how long the whole thing took.

Try It

The code is here: https://github.com/peterbe/sockshootout2019

And the demo app is here: https://sockshootout.app (Just press "Start!", wait and press it 2 or 3 more times)

Location, location, location

What matters is the geographical distance between you and the server. The server used in this experiment is in New York, USA.

What you'll find is that the closer you are to the server (lower latency) the better WebSocket performs. Here's what mine looks like:

My result between South Carolina, USA and New York, USA
My result between South Carolina, USA and New York, USA

Now, when I run the whole experiment all on my laptop the results look very different:

Running all locally
Running all locally

I don't have a screenshot for it but a friend of mine ran this from his location in Perth, Australia. There was no difference. If any difference it was "noise".

Same Conclusion?

Yes, latency matters most. The technique, for the benefit of performance, doesn't matter much.

No matter how fancy you're trying to be, what matters is the path the bytes have to travel. Or rather, the distance the bytes have to travel. If you're far away a large majority of the total time is sending and receiving the data. Not the time it takes the browser (or the server) to process it.

However, suppose you do have all your potential clients physically near the server, it might be beneficial to use WebSockets.

Thoughts and Conclusions

My original thought was to use WebSockets instead of XHR for an autocomplete widget. At almost every keystroke, you send it to the server and as search results come in, you update the search result display. Things like that need to be fast and "snappy". But that's not where WebSockets shine. They shine in their ability to actively await results without having a loop that periodically pulls. There's nothing wrong with WebSocket and it has its brilliant use cases.

In summary, don't bother just to get a single-digit percentage performance increase if the complexity of the code and infrastructure is non-trivial. Keep building cool stuff with WebSockets but if you expect one result per action, XHR is good enough.

Bonus

The experiment app does collect everyone's results (just the timings and IP) and I hope to find the time to process this and build graph a correlating the geographical distance compared to the difference between the two techniques. Watch this space!

By the way, if you do plan on writing some WebSocket implementation code I highly recommend Sockette. It's solid and easy to use.

Whatsdeployed rewritten in React

15 April 2019 0 comments   Javascript, ReactJS, Python, Web development


A couple of months ago my colleague Michael @mythmon Cooper wanted to add a feature to the front-end code of Whatsdeployed and learned that the whole front-end is spaghetti jQuery code. So, instead, he re-wrote it in React. My only requirements were "Use create-react-app and no redux", i.e. keep it simple.

We also took the opportunity to rewrite some of the ways that URLs are handled. It used to be that a "short link" would redirect. For example GET /s-5HY would return 302 to Location: ?org=mozilla&repo=tecken&name[]=Dev&url[]=https://symbols.dev.mozaws.net/__version__&name[]=Stage... Basically, the short link was just an alias for a redirect. Just like those services like bit.ly or g.co. Now, the short link is a permanent fixture. The short link is included in the XHR calls to the server for getting the relevant data.

All old URLs will continue to work but now the canonical URL becomes /s/5HY/mozilla-services/tecken, for example. The :org/:repo isn't really necessary because the server knows exactly what 5HY (in this example means), but it's nice for the URL bar's memory.

Another thing that changed was how it can recognize "bors commits". When you use bors, you put a bunch of commits into a GitHub Pull Request and then ask the bors bot to merge them into master . Using "bors mode" in Whatsdeployed is optional but we believe it looks a lot more user-friendly. Here is an example of mozilla/normandy with and without bors toggled on and off.

Without "bors mode"
Without "bors mode"

With "bors mode"
With "bors mode"

Thank you mythmon!

Lastly, hopefully this will make it a lot easier to contribute. Check out https://github.com/peterbe/whatsdeployed . All you need is Python 3, a PostgreSQL, and almost any version of Node that can run create-react-apps. Ping me if you find it hard to get up and running.

Format numbers with numberWithCommas() or Number.toLocaleString()

05 March 2019 1 comment   Javascript, Web development

https://codepen.io/peterbe/pen/xBRGoN?editors=1011#0


In a highly unscientific survey of exactly 2 French native friends, I asked them what they think about formatting large numbers the "French way" versus doing it the "English way". In particular, if the rest of content/app is English, would it be jarring if the formatting of numbers was French. Both Adrian and Mathieu said they prefer displaying the number the French way even if the app/content is French.

If you have an English browser opening https://codepen.io/peterbe/pen/xBRGoN means it's going to display the two numbers the same way. But if you have a French locale in your browser it'll look like this:

French

Number.toLocaleString() is now universally supported so that's no longer a worry.

For years I was using a function like this:

/* http://stackoverflow.com/a/2901298 */
function numberWithCommas(x) {
  var parts = x.toString().split('.');
  parts[0] = parts[0].replace(/\B(?=(\d{3})+(?!\d))/g, ',');
  return parts.join('.');
}

numberWithCommas(100000000);
// "100,000,000"

jsperf
and it works and is reasonably fast too but it's so tempting to not use and instead stand on the shoulder-of-browsers to supply this functionality instead. But consider the alternative:

(100000000).toLocaleString();
// "100,000,000"

The thing that's always worried me is; What will someone's reaction be if the texts are in one locale and the formatting of numbers (and dates, etc!) are in another locale?

All 2 of the people I asked say they don't mind the mixing but admit that it's weird but that ultimately they prefer "their" format.

If you're non-English browser, what do you prefer? If you're a web usability expert, please, too, drop a comment to share what you think.

create-react-app, SCSS, and Bulmaswatch

12 February 2019 0 comments   Javascript, ReactJS, Web development

https://jenil.github.io/bulmaswatch/


1. Create a create-react-app first:

create-react-app myapp

2. Enter it and install node-sass and bulmaswatch

cd myapp
yarn add bulma bulmaswatch node-sass

3. Edit the src/index.js to import index.scss instead:

-import "./index.css";
+import "./index.scss";

4. "Rename" the index.css file:

git rm src/index.css 
touch src/index.scss
git add src/index.scss

5. Now edit the src/index.scss to look like this:

@import "node_modules/bulmaswatch/darkly/bulmaswatch";

This assumes your favorite theme was the darkly one. You can obviously change that later.

6. Run the app:

BROWSER=none yarn start

7. Open the browser at http://localhost:3000

CRA start

That's it! However, the create-react-app default look doesn't expose any of the cool stuff that Bulma can style. So let's rewrite our src/App.js by copying the minimal starter HTML from the Bulma documentation. So make the src/App.js component look something like this:

class App extends Component {
  render() {
    return (
      <section className="section">
        <div className="container">
          <h1 className="title">Hello World</h1>
          <p className="subtitle">
            My first website with <strong>Bulma</strong>!
          </p>
        </div>
      </section>
    );
  }
}

Now it'll look like this:

Bulma starter template

Yes, it's not much but it's a great start. Over to you to take this to infinity and beyond!

Not So Secret Sauce

In the rushed instructions above the choice of theme was darkly. But what you need to do next is go to https://jenil.github.io/bulmaswatch/, click around and eventually pick the one you like. Suppose you like spacelab, then you just change that @import ... line to be:

@import "node_modules/bulmaswatch/spacelab/bulmaswatch";

Optimize DOM selector lookups by pre-warming by selectors' parents

11 February 2019 0 comments   Javascript, Web Performance, Node, Web development

https://github.com/peterbe/minimalcss/pull/296#issuecomment-460392253


tl;dr; minimalcss 0.8.2 introduces a 20% post-processing optimization by lumping many CSS selectors to their parent CSS selectors as a pre-emptive cache.

In minimalcss the general core of it is that it downloads a DOM tree, as HTML, parses it and parses all the CSS stylesheets associated. These might be from <link ref="stylesheet"> or <style> tags.
Once the CSS stylesheets are turned into an AST it loops over each and every CSS selector and asks a simple question; "Does this CSS selector exist in the DOM?". The equivalent is to open your browser's Web Console and type:

>>> document.querySelectorAll('div.foo span.bar b').length > 0
false

For each of these lookups (which is done with cheerio by the way), minimalcss reduces the CSS, as an AST, and eventually spits the AST back out as a CSS string. The only problem is; it's slow. In the case of view-source:https://semantic-ui.com/ in the CSS it uses, there are 6,784 of them. What to do?

First of all, there isn't a lot you can do. This is the work that needs to be done. But one thing you can do is be smart about which selectors you look at and use a "decision cache" to pre-emptively draw conclusions. So, if this is what you have to check:

  1. #example .alternate.stripe
  2. #example .theming.stripe
  3. #example .solid .column p b
  4. #example .solid .column p

As you process the first one you extract that the parent CSS selector is #example and if that doesn't exist in the DOM, you can efficiently draw conclusion about all preceeding selectors that all start with #example .... Granted, if they call exist you will pay a penalty of doing an extra lookup. But that's the trade-off that this optimization is worth.

Check out the comments where I tested a bloated page that uses Semantic-UI before and after. Instead of doing 3,285 of these document.querySelector(selector) calls, it's now able too come to the exact same conclusion with just 1,563 lookups.

Sadly, the majority of the time spent processing lies in network I/O and other overheads but this work did reduce something that used to take 6.3s (median) too 5.1s (median).